71 research outputs found

    How do novice and improver walkers move in their home environments? An open-sourced infant’s gait video analysis

    Get PDF
    Objective Natural independent walking mostly occurs during infant´s everyday explorations of their home environment. Gait characteristics of infant walkers at different developmental stages exist in literature, however, data has been only collected in laboratory environments, which may reduce gait variability, therefore mask differences between developmental stages of natural gait. The aim of the study was to provide the first data set of temporal and functional gait characteristics of novice and improver infant walkers in familiar environment conditions in their home. We hypothesised that familiar environment conditions may effectively demonstrate natural gait characteristics and real differences in gait variables differing between 2 groups of developing infant walkers. Methods In a cross-sectional design; we used open-source videos of infants in their home environments: twenty videos of 10 novice (5 girls, 5 boys, 7–12 months) and 10 improver (4 girls, 6 boys, 8–13 months) walkers were chosen from an open-source website. 2-D video gait analysis was undertaken for these parameters: falls frequency, frequency of stops, gait cadence, and time of stance phase, swing phase, and double support. Between groups comparison for novice versus improver was investigated by Mann-Whitney U tests (p ≤ 0.05) with determination of effect size of Pearson r correlation. Results Statistically significant differences between groups with large effect sizes were found for these parameters: falls frequency (p = 0.01, r = 0.56); cadence (p = 0.01, r = 0.57); stance phase duration of right leg (p < 0.01, r = 0.63); stance phase duration of left leg (p = 0.01, r = 0.56); and double support phase duration (p < 0.01, r = 0.69). Novices scored higher in comparison with improver walkers in all the parameters except cadence. Conclusions This study presents the first data set of functional and temporal gait parameters of novice and improver infant walkers in their home environments. As an addition to recent research, novice infants walk with lower cadence and higher falls frequency, stance phase time and double support in their familiar environments. With increasing experiences, infant´s cadence increases while the other parameters decrease

    Ion-Transfer Voltammetric Behavior of Propranolol at Nanoscale Liquid-Liquid Interface Arrays

    Get PDF
    In this work, the ion-transfer voltammetric detection of the protonated β-blocker propranolol was explored at arrays of nanoscale interfaces between two immiscible electrolyte solutions (ITIES). Silicon nitride nanoporous membranes with 400 pores in a hexagonal arrangement, with either 50 or 17 nm radius pores, were used to form regular arrays of nanoITIES. It was found that the aqueous-to-organic ion-transfer current continuously increased steadily rather than reaching a limiting current plateau after the ion-transfer wave; the slope of this limiting current region was concentration dependent and associated with the high ion flux at the nanointerfaces. Electrochemical data were examined in terms of an independent nanointerface approach and an equivalent microdisc approach, supported by finite element simulation. In comparison to the larger interface configuration (50 nm radius), the array of 17 nm radius nanoITIES exhibited a 6.5-times higher current density for propranolol detection due to the enhanced ion flux arising from the convergent diffusion to smaller electrochemical interfaces. Both nanoITIES arrays achieved the equivalent limits of detection, 0.8 μM, using cyclic voltammetry. Additionally, the effect of scan rate on the charging and faradaic currents at these nanoITIES arrays, as well as their stability over time, was investigated. The results demonstrate that arrays of nanoscale liquid–liquid interfaces can be applied to study electrochemical drug transfer, and provide the basis for the development of miniaturized and integrated detection platforms for drug analysis

    CD44v4 Is a Major E-Selectin Ligand that Mediates Breast Cancer Cell Transendothelial Migration

    Get PDF
    BACKGROUND: Endothelial E-selectin has been shown to play a pivotal role in mediating cell-cell interactions between breast cancer cells and endothelial monolayers during tumor cell metastasis. However, the counterreceptor for E-selectin and its role in mediating breast cancer cell transendothelial migration remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: By assessing migration of various breast cancer cells across TNF-alpha pre-activated human umbilical vein endothelial cells (HUVECs), we found that breast cancer cells migrated across HUVEC monolayers differentially and that transmigration was E-selectin dependent. Cell surface labeling with the E-selectin extracellular domain/Fc chimera (exE-selectin/Fc) showed that the transmigration capacity of breast cancer cells was correlated to both the expression level and localization pattern of E-selectin binding protein(s) on the tumor cell surface. The exE-selectin/Fc strongly bound to metastatic MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells, but not non-metastatic MCF-7 and T47D cells. Binding of exE-selectin/Fc was abolished by removal of tumor cell surface sialyl lewis x (sLe(x)) moieties. Employing an exE-selectin/Fc affinity column, we further purified the counterreceptor of E-selectin from metastatic breast cancer cells. The N-terminal protein sequence and cDNA sequence identified this E-selectin ligand as a approximately 170 kD human CD44 variant 4 (CD44v4). Purified CD44v4 showed a high affinity for E-selectin via sLe(x) moieties and, as expected, MDA-MB-231 cell adhesion to and migration across HUVEC monolayers were significantly reduced by down-regulation of tumor cell CD44v4 via CD44v4-specific siRNA. CONCLUSIONS/SIGNIFICANCE: We demonstrated, for the first time, that breast cancer cell CD44v4 is a major E-selectin ligand in facilitating tumor cell migration across endothelial monolayers. This finding offers new insights into the molecular basis of E-selectin-dependent adhesive interactions that mediate breast cancer cell transendothelial metastasis

    Vestibular navigation directed by the slope of terrain.

    No full text

    Popeye domain containing 1 (Popdc1/Bves) is a caveolae-associated protein involved in ischemia tolerance

    Get PDF
    Popeye domain containing1 (Popdc1), also named Bves, is an evolutionary conserved membrane protein. Despite its high expression level in the heart little is known about its membrane localization and cardiac functions. The study examined the hypothesis that Popdc1 might be associated with the caveolae and play a role in myocardial ischemia tolerance. To address these issues, we analyzed hearts and cardiomyocytes of wild type and Popdc1-null mice. Immunoconfocal microscopy revealed co-localization of Popdc1 with caveolin3 in the sarcolemma, intercalated discs and T-tubules and with costameric vinculin. Popdc1 was co-immunoprecipitated with caveolin3 from cardiomyocytes and from transfected COS7 cells and was co-sedimented with caveolin3 in equilibrium density gradients. Caveolae disruption by methyl-β-cyclodextrin or by ischemia/reperfusion (I/R) abolished the cellular co-localization of Popdc1 with caveolin3 and modified their density co-sedimentation. The caveolin3-rich fractions of Popdc1-null hearts redistributed to fractions of lower buoyant density. Electron microscopy showed a statistically significant 70% reduction in caveolae number and a 12% increase in the average diameter of the remaining caveolae in the mutant hearts. In accordance with these changes, Popdc1-null cardiomyocytes displayed impaired [Ca(+2)](i) transients, increased vulnerability to oxidative stress and no pharmacologic preconditioning. In addition, induction of I/R injury to Langendorff-perfused hearts indicated a significantly lower functional recovery in the mutant compared with wild type hearts while their infarct size was larger. No improvement in functional recovery was observed in Popdc1-null hearts following ischemic preconditioning. The results indicate that Popdc1 is a caveolae-associated protein important for the preservation of caveolae structural and functional integrity and for heart protection

    ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation.

    No full text

    Surface-directed morphology evolution in ternary blends of polyethylene, polypropylene, and ethylene-propylene copolymer: A study by laser scanning confocal fluorescence microscopy

    No full text
    International audienceWith laser scanning confocal fluorescence microscopy, we demonstrate a novel type of morphology evolution in moderately thick films (70-100 m) of ternary blends of polypropylene (PP), polyethylene (PE), and ethylene-propylene rubber (EPR), in which EPR is labeled with a benzothioxanthene dye (HY-EPR). The blends are prepared by solution blending, and the phase morphology evolves during the annealing of the blend films in a stainless steel mold. Our results indicate that wetting of the mold surface is a driving force in morphology evolution for the two blend compositions investigated. For 81/14/5 PP/PE/HY-EPR, phase evolution within the mold results in a laminar structure and hydrodynamic channels, features which have previously been found in thin films of polymer blends as a result of surface-directed spinodal decomposition. In a blend with a lower weight fraction of the dispersed phase (92/7/1 PP/PE/HY-EPR), we find that the PE/HY-EPR domains are larger and more polydisperse closer to the surface because of wetting of the mold wall. We also show that the phase morphology in these films can be controlled by the nature of one or both of the surfaces being varied. When one of the mold surfaces is replaced with a thin film of PP homopolymer, we observe draining of PE/HY-EPR from the PP to the mold surface, which results in a bilayer structure. A trilayer morphology is likewise obtained by the replacement of both mold surfaces with PP. We also carry out three-dimensional image reconstruction on a single PE/HY-EPR particle within the 81/14/5 PP/PE/HY-EPR blend to obtain detailed information on the interphase structure. We find that HY-EPR of this composition (30/70 ethylene/propylene) fully coats the PE dispersed phase and partially penetrates the PE droplets. This result falls between the interphase structures found for previously investigated EPR compositions (40/60 and 80/20 ethylene/propylene). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 637-654, 200
    • …
    corecore